Lie algebra theory without algebra
نویسنده
چکیده
This is an entirely expository piece: the main results discussed are very wellknown and the approach we take is not really new, although the presentation may be somewhat different to what is in the literature. The author’s main motivation for writing this piece comes from a feeling that the ideas deserve to be more widely known. Let g be a Lie algebra over R or C. . A vector subspace I ⊂ g is an ideal if [I,g] ⊂ I. The Lie algebra is called simple if it is not abelian and contains no proper ideals. A famous result of Cartan asserts that any simple complex Lie algebra has a compact real form (that is to say, the complex Lie algebra is the complexification of the Lie algebra of a compact group). This result underpins the theory of real Lie algebras, their maximal compact subgroups and the classification of symmetric spaces. In the standard approach, Cartan’s result emerges after a good deal of theory: the Theorems of Engel and Lie, Cartan’s criterion involving the nondegeneracy of the Killing form, root systems etc. On the other hand if one assumes this result known–by some means–then one can immediately read off much of the standard structure theory of complex Lie groups and their representations. Everything is reduced to the compact case (Weyl’s “unitarian trick”), and one can proceed directly to develop the detailed theory of root systems etc. In [2], Cartan wrote J’ai trouvé effectivement une telle forme pour chacun des types de groupes simples. M. H. Weyl a démontré ensuite l’existence de cette forme par une raisonnement général s’appliquant à tous les cas à fois. On peut se demander si les calculs qui l’ont conduit à ce résultat ne pourraient pas encore se simplifier, ou plutôt si l’on ne pourrait pas, par une raissonnement a priori,
منابع مشابه
Lattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کاملSome properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملMonomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملOn dimensions of derived algebra and central factor of a Lie algebra
Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کامل