Lie algebra theory without algebra

نویسنده

  • S. K. Donaldson
چکیده

This is an entirely expository piece: the main results discussed are very wellknown and the approach we take is not really new, although the presentation may be somewhat different to what is in the literature. The author’s main motivation for writing this piece comes from a feeling that the ideas deserve to be more widely known. Let g be a Lie algebra over R or C. . A vector subspace I ⊂ g is an ideal if [I,g] ⊂ I. The Lie algebra is called simple if it is not abelian and contains no proper ideals. A famous result of Cartan asserts that any simple complex Lie algebra has a compact real form (that is to say, the complex Lie algebra is the complexification of the Lie algebra of a compact group). This result underpins the theory of real Lie algebras, their maximal compact subgroups and the classification of symmetric spaces. In the standard approach, Cartan’s result emerges after a good deal of theory: the Theorems of Engel and Lie, Cartan’s criterion involving the nondegeneracy of the Killing form, root systems etc. On the other hand if one assumes this result known–by some means–then one can immediately read off much of the standard structure theory of complex Lie groups and their representations. Everything is reduced to the compact case (Weyl’s “unitarian trick”), and one can proceed directly to develop the detailed theory of root systems etc. In [2], Cartan wrote J’ai trouvé effectivement une telle forme pour chacun des types de groupes simples. M. H. Weyl a démontré ensuite l’existence de cette forme par une raisonnement général s’appliquant à tous les cas à fois. On peut se demander si les calculs qui l’ont conduit à ce résultat ne pourraient pas encore se simplifier, ou plutôt si l’on ne pourrait pas, par une raissonnement a priori,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

On dimensions of derived algebra and central factor of a Lie algebra

Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.

متن کامل

Lie triple derivation algebra of Virasoro-like algebra

Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007